Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity.

Identifieur interne : 000533 ( Main/Exploration ); précédent : 000532; suivant : 000534

Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity.

Auteurs : Andrew J. Love [Royaume-Uni] ; Chiara Geri ; Janet Laird ; Craig Carr ; Byung-Wook Yun ; Gary J. Loake ; Yasuomi Tada ; Ari Sadanandom ; Joel J. Milner

Source :

RBID : pubmed:23071821

Descripteurs français

English descriptors

Abstract

Cauliflower mosaic virus (CaMV) encodes a multifunctional protein P6 that is required for translation of the 35S RNA and also acts as a suppressor of RNA silencing. Here we demonstrate that P6 additionally acts as a pathogenicity effector of an unique and novel type, modifying NPR1 (a key regulator of salicylic acid (SA)- and jasmonic acid (JA)-dependent signaling) and inhibiting SA-dependent defence responses We find that that transgene-mediated expression of P6 in Arabidopsis and transient expression in Nicotiana benthamiana has profound effects on defence signaling, suppressing expression of representative SA-responsive genes and increasing expression of representative JA-responsive genes. Relative to wild-type Arabidopsis P6-expressing transgenics had greatly reduced expression of PR-1 following SA-treatment, infection by CaMV or inoculation with an avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst). Similarly transient expression in Nicotiana benthamiana of P6 (including a mutant form defective in translational transactivation activity) suppressed PR-1a transcript accumulation in response to Agrobacterium infiltration and following SA-treatment. As well as suppressing the expression of representative SA-regulated genes, P6-transgenic Arabidopsis showed greatly enhanced susceptibility to both virulent and avirulent Pst (titres elevated 10 to 30-fold compared to non-transgenic controls) but reduced susceptibility to the necrotrophic fungus Botrytis cinerea. Necrosis following SA-treatment or inoculation with avirulent Pst was reduced and delayed in P6-transgenics. NPR1 an important regulator of SA/JA crosstalk, was more highly expressed in the presence of P6 and introduction of the P6 transgene into a transgenic line expressing an NPR1:GFP fusion resulted in greatly increased fluorescence in nuclei even in the absence of SA. Thus in the presence of P6 an inactive form of NPR1 is mislocalized in the nucleus even in uninduced plants. These results demonstrate that P6 is a new type of pathogenicity effector protein that enhances susceptibility to biotrophic pathogens by suppressing SA- but enhancing JA-signaling responses.

DOI: 10.1371/journal.pone.0047535
PubMed: 23071821
PubMed Central: PMC3469532


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity.</title>
<author>
<name sortKey="Love, Andrew J" sort="Love, Andrew J" uniqKey="Love A" first="Andrew J" last="Love">Andrew J. Love</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Science Research Theme, School of Life Sciences and Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Plant Science Research Theme, School of Life Sciences and Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland</wicri:regionArea>
<orgName type="university">Université de Glasgow</orgName>
<placeName>
<settlement type="city">Glasgow</settlement>
<region type="country">Écosse</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Geri, Chiara" sort="Geri, Chiara" uniqKey="Geri C" first="Chiara" last="Geri">Chiara Geri</name>
</author>
<author>
<name sortKey="Laird, Janet" sort="Laird, Janet" uniqKey="Laird J" first="Janet" last="Laird">Janet Laird</name>
</author>
<author>
<name sortKey="Carr, Craig" sort="Carr, Craig" uniqKey="Carr C" first="Craig" last="Carr">Craig Carr</name>
</author>
<author>
<name sortKey="Yun, Byung Wook" sort="Yun, Byung Wook" uniqKey="Yun B" first="Byung-Wook" last="Yun">Byung-Wook Yun</name>
</author>
<author>
<name sortKey="Loake, Gary J" sort="Loake, Gary J" uniqKey="Loake G" first="Gary J" last="Loake">Gary J. Loake</name>
</author>
<author>
<name sortKey="Tada, Yasuomi" sort="Tada, Yasuomi" uniqKey="Tada Y" first="Yasuomi" last="Tada">Yasuomi Tada</name>
</author>
<author>
<name sortKey="Sadanandom, Ari" sort="Sadanandom, Ari" uniqKey="Sadanandom A" first="Ari" last="Sadanandom">Ari Sadanandom</name>
</author>
<author>
<name sortKey="Milner, Joel J" sort="Milner, Joel J" uniqKey="Milner J" first="Joel J" last="Milner">Joel J. Milner</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23071821</idno>
<idno type="pmid">23071821</idno>
<idno type="doi">10.1371/journal.pone.0047535</idno>
<idno type="pmc">PMC3469532</idno>
<idno type="wicri:Area/Main/Corpus">000486</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000486</idno>
<idno type="wicri:Area/Main/Curation">000486</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000486</idno>
<idno type="wicri:Area/Main/Exploration">000486</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity.</title>
<author>
<name sortKey="Love, Andrew J" sort="Love, Andrew J" uniqKey="Love A" first="Andrew J" last="Love">Andrew J. Love</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Science Research Theme, School of Life Sciences and Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Plant Science Research Theme, School of Life Sciences and Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland</wicri:regionArea>
<orgName type="university">Université de Glasgow</orgName>
<placeName>
<settlement type="city">Glasgow</settlement>
<region type="country">Écosse</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Geri, Chiara" sort="Geri, Chiara" uniqKey="Geri C" first="Chiara" last="Geri">Chiara Geri</name>
</author>
<author>
<name sortKey="Laird, Janet" sort="Laird, Janet" uniqKey="Laird J" first="Janet" last="Laird">Janet Laird</name>
</author>
<author>
<name sortKey="Carr, Craig" sort="Carr, Craig" uniqKey="Carr C" first="Craig" last="Carr">Craig Carr</name>
</author>
<author>
<name sortKey="Yun, Byung Wook" sort="Yun, Byung Wook" uniqKey="Yun B" first="Byung-Wook" last="Yun">Byung-Wook Yun</name>
</author>
<author>
<name sortKey="Loake, Gary J" sort="Loake, Gary J" uniqKey="Loake G" first="Gary J" last="Loake">Gary J. Loake</name>
</author>
<author>
<name sortKey="Tada, Yasuomi" sort="Tada, Yasuomi" uniqKey="Tada Y" first="Yasuomi" last="Tada">Yasuomi Tada</name>
</author>
<author>
<name sortKey="Sadanandom, Ari" sort="Sadanandom, Ari" uniqKey="Sadanandom A" first="Ari" last="Sadanandom">Ari Sadanandom</name>
</author>
<author>
<name sortKey="Milner, Joel J" sort="Milner, Joel J" uniqKey="Milner J" first="Joel J" last="Milner">Joel J. Milner</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analysis of Variance (MeSH)</term>
<term>Arabidopsis (MeSH)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Botrytis (MeSH)</term>
<term>Cyclopentanes (metabolism)</term>
<term>Disease Resistance (genetics)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Immunity, Innate (physiology)</term>
<term>Microscopy, Fluorescence (MeSH)</term>
<term>Oxylipins (metabolism)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Salicylic Acid (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>Tobacco (MeSH)</term>
<term>Trans-Activators (pharmacology)</term>
<term>Trypan Blue (MeSH)</term>
<term>Virulence Factors (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide salicylique (métabolisme)</term>
<term>Analyse de variance (MeSH)</term>
<term>Arabidopsis (MeSH)</term>
<term>Bleu de trypan (MeSH)</term>
<term>Botrytis (MeSH)</term>
<term>Cyclopentanes (métabolisme)</term>
<term>Facteurs de virulence (pharmacologie)</term>
<term>Immunité innée (physiologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Microscopie de fluorescence (MeSH)</term>
<term>Oxylipines (métabolisme)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Résistance à la maladie (génétique)</term>
<term>Tabac (MeSH)</term>
<term>Transactivateurs (pharmacologie)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Cyclopentanes</term>
<term>Oxylipins</term>
<term>Salicylic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Disease Resistance</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Résistance à la maladie</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide salicylique</term>
<term>Cyclopentanes</term>
<term>Oxylipines</term>
<term>Protéines d'Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Facteurs de virulence</term>
<term>Transactivateurs</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Trans-Activators</term>
<term>Virulence Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Immunité innée</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Immunity, Innate</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Analysis of Variance</term>
<term>Arabidopsis</term>
<term>Botrytis</term>
<term>Microscopy, Fluorescence</term>
<term>Plants, Genetically Modified</term>
<term>Tobacco</term>
<term>Trypan Blue</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de variance</term>
<term>Arabidopsis</term>
<term>Bleu de trypan</term>
<term>Botrytis</term>
<term>Microscopie de fluorescence</term>
<term>Tabac</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cauliflower mosaic virus (CaMV) encodes a multifunctional protein P6 that is required for translation of the 35S RNA and also acts as a suppressor of RNA silencing. Here we demonstrate that P6 additionally acts as a pathogenicity effector of an unique and novel type, modifying NPR1 (a key regulator of salicylic acid (SA)- and jasmonic acid (JA)-dependent signaling) and inhibiting SA-dependent defence responses We find that that transgene-mediated expression of P6 in Arabidopsis and transient expression in Nicotiana benthamiana has profound effects on defence signaling, suppressing expression of representative SA-responsive genes and increasing expression of representative JA-responsive genes. Relative to wild-type Arabidopsis P6-expressing transgenics had greatly reduced expression of PR-1 following SA-treatment, infection by CaMV or inoculation with an avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst). Similarly transient expression in Nicotiana benthamiana of P6 (including a mutant form defective in translational transactivation activity) suppressed PR-1a transcript accumulation in response to Agrobacterium infiltration and following SA-treatment. As well as suppressing the expression of representative SA-regulated genes, P6-transgenic Arabidopsis showed greatly enhanced susceptibility to both virulent and avirulent Pst (titres elevated 10 to 30-fold compared to non-transgenic controls) but reduced susceptibility to the necrotrophic fungus Botrytis cinerea. Necrosis following SA-treatment or inoculation with avirulent Pst was reduced and delayed in P6-transgenics. NPR1 an important regulator of SA/JA crosstalk, was more highly expressed in the presence of P6 and introduction of the P6 transgene into a transgenic line expressing an NPR1:GFP fusion resulted in greatly increased fluorescence in nuclei even in the absence of SA. Thus in the presence of P6 an inactive form of NPR1 is mislocalized in the nucleus even in uninduced plants. These results demonstrate that P6 is a new type of pathogenicity effector protein that enhances susceptibility to biotrophic pathogens by suppressing SA- but enhancing JA-signaling responses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23071821</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>02</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity.</ArticleTitle>
<Pagination>
<MedlinePgn>e47535</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0047535</ELocationID>
<Abstract>
<AbstractText>Cauliflower mosaic virus (CaMV) encodes a multifunctional protein P6 that is required for translation of the 35S RNA and also acts as a suppressor of RNA silencing. Here we demonstrate that P6 additionally acts as a pathogenicity effector of an unique and novel type, modifying NPR1 (a key regulator of salicylic acid (SA)- and jasmonic acid (JA)-dependent signaling) and inhibiting SA-dependent defence responses We find that that transgene-mediated expression of P6 in Arabidopsis and transient expression in Nicotiana benthamiana has profound effects on defence signaling, suppressing expression of representative SA-responsive genes and increasing expression of representative JA-responsive genes. Relative to wild-type Arabidopsis P6-expressing transgenics had greatly reduced expression of PR-1 following SA-treatment, infection by CaMV or inoculation with an avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst). Similarly transient expression in Nicotiana benthamiana of P6 (including a mutant form defective in translational transactivation activity) suppressed PR-1a transcript accumulation in response to Agrobacterium infiltration and following SA-treatment. As well as suppressing the expression of representative SA-regulated genes, P6-transgenic Arabidopsis showed greatly enhanced susceptibility to both virulent and avirulent Pst (titres elevated 10 to 30-fold compared to non-transgenic controls) but reduced susceptibility to the necrotrophic fungus Botrytis cinerea. Necrosis following SA-treatment or inoculation with avirulent Pst was reduced and delayed in P6-transgenics. NPR1 an important regulator of SA/JA crosstalk, was more highly expressed in the presence of P6 and introduction of the P6 transgene into a transgenic line expressing an NPR1:GFP fusion resulted in greatly increased fluorescence in nuclei even in the absence of SA. Thus in the presence of P6 an inactive form of NPR1 is mislocalized in the nucleus even in uninduced plants. These results demonstrate that P6 is a new type of pathogenicity effector protein that enhances susceptibility to biotrophic pathogens by suppressing SA- but enhancing JA-signaling responses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Love</LastName>
<ForeName>Andrew J</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>Plant Science Research Theme, School of Life Sciences and Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Geri</LastName>
<ForeName>Chiara</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Laird</LastName>
<ForeName>Janet</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Carr</LastName>
<ForeName>Craig</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yun</LastName>
<ForeName>Byung-Wook</ForeName>
<Initials>BW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Loake</LastName>
<ForeName>Gary J</ForeName>
<Initials>GJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tada</LastName>
<ForeName>Yasuomi</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sadanandom</LastName>
<ForeName>Ari</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Milner</LastName>
<ForeName>Joel J</ForeName>
<Initials>JJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/C005561</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/D017319</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003517">Cyclopentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C105496">NPR1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015534">Trans-Activators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037521">Virulence Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C095687">gene VI protein, Cauliflower mosaic virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6RI5N05OWW</RegistryNumber>
<NameOfSubstance UI="C011006">jasmonic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>I2ZWO3LS3M</RegistryNumber>
<NameOfSubstance UI="D014343">Trypan Blue</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O414PZ4LPZ</RegistryNumber>
<NameOfSubstance UI="D020156">Salicylic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000704" MajorTopicYN="N">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020171" MajorTopicYN="N">Botrytis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003517" MajorTopicYN="N">Cyclopentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020156" MajorTopicYN="N">Salicylic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015534" MajorTopicYN="N">Trans-Activators</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014343" MajorTopicYN="N">Trypan Blue</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037521" MajorTopicYN="N">Virulence Factors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>06</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>09</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23071821</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0047535</ArticleId>
<ArticleId IdType="pii">PONE-D-12-19160</ArticleId>
<ArticleId IdType="pmc">PMC3469532</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19966292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Dec;24(5):569-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11123796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 May;18(5):428-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15915641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Oct;36(18):5896-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Apr;46(1):14-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16553893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2007 Jul;104(1):34-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17697981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2011;1:187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19593-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17164336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Jul;23(7):835-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20521947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):421-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19608449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jun 27;113(7):935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jun;56(416):1525-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15837710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2009 Dec;90(Pt 12):3010-3014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19710258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Aug;77(15):8577-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Nucleic Acid Res Mol Biol. 2002;72:1-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12206450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:177-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2000 Jan 1;1(1):77-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20572954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Apr;9(4):547-557</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12237364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jun;19(6):2053-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Mar;18(3):212-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15782635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):1147-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2004 Jan 1;5(1):71-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:509-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Dec;138(1-2):119-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18851998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Aug 6;27(15):2102-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18615098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(21):6233-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17090584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Jun;14(6):715-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11386367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Sep;56(1):111-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Aug;16(8):669-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12906111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2008 Sep 15;22(18):2564-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Oct;7(5):547-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15337097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Aug;7(4):456-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Jan 15;6(1):e1000729</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20084269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Mar;16(3):206-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12650452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 May 29;137(5):804-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19490889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(4):707-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17688586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Jan;16(1):35-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12580280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Aug;11(4):373-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Sep 21;106(6):723-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11572778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2007 Dec;88(Pt 12):3439-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Jun;149(2):537-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9611172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23(3):1014-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21441437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Nov 29;414(6863):562-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11734859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Nov;12(11):2175-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11090217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Feb;128(2):552-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(4):993-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Jun;20(6):659-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17555274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Mar;17(3):927-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15746075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Aug 15;321(5891):952-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18635760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2002 Feb 15;293(2):225-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11886242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2002 Nov 1;3(6):419-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 Dec;10(9):1094-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9390424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Oct;219(6):1089-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15293050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 May;17(5):475-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Mar;15(3):760-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Oct;139(2):935-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 Jan;8(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16435264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2010 Jan 15;167(2):144-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19716624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 May 29;137(5):860-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19490895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):1005-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19028879</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Écosse</li>
</region>
<settlement>
<li>Glasgow</li>
</settlement>
<orgName>
<li>Université de Glasgow</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Carr, Craig" sort="Carr, Craig" uniqKey="Carr C" first="Craig" last="Carr">Craig Carr</name>
<name sortKey="Geri, Chiara" sort="Geri, Chiara" uniqKey="Geri C" first="Chiara" last="Geri">Chiara Geri</name>
<name sortKey="Laird, Janet" sort="Laird, Janet" uniqKey="Laird J" first="Janet" last="Laird">Janet Laird</name>
<name sortKey="Loake, Gary J" sort="Loake, Gary J" uniqKey="Loake G" first="Gary J" last="Loake">Gary J. Loake</name>
<name sortKey="Milner, Joel J" sort="Milner, Joel J" uniqKey="Milner J" first="Joel J" last="Milner">Joel J. Milner</name>
<name sortKey="Sadanandom, Ari" sort="Sadanandom, Ari" uniqKey="Sadanandom A" first="Ari" last="Sadanandom">Ari Sadanandom</name>
<name sortKey="Tada, Yasuomi" sort="Tada, Yasuomi" uniqKey="Tada Y" first="Yasuomi" last="Tada">Yasuomi Tada</name>
<name sortKey="Yun, Byung Wook" sort="Yun, Byung Wook" uniqKey="Yun B" first="Byung-Wook" last="Yun">Byung-Wook Yun</name>
</noCountry>
<country name="Royaume-Uni">
<region name="Écosse">
<name sortKey="Love, Andrew J" sort="Love, Andrew J" uniqKey="Love A" first="Andrew J" last="Love">Andrew J. Love</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000533 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000533 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23071821
   |texte=   Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23071821" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024